Wednesday, December 5, 2012

Arctic anomalies linked to extreme weather

Surface temperature anomalies of 20 degrees Celsius are not uncommon in the Arctic these days. The image below shows surface temperature anomalies on November 9 and 10, 2012.


Paul Beckwith, regular contributor to this blog, comments as follows on the conditions in the Arctic:
“The Arctic meteorology is unprecedented at the moment. Huge ridges of high pressure are crossing the Arctic ocean cutting off the Siberian cold region from the North American region. Very little cold air is present in the entire system, and it is exhibiting very bizzare fragmentation. Nothing like a “normal” polar vortex is apparent.

The ridge could just be due to this greatly reduced volume of cold air, but I suspect there is much more to the situation then that. It seems that there must be some source of heat to create this ridge. Could be warm air rising up from open water regions in the Arctic, however most of the warm water is now isolated from the atmosphere by the sea ice.

It seems more likely to me that the high levels of methane with GWP > 150 or higher are causing higher long-wave absorption and heating in these regions, but I have not seen methane concentration distributions over the Arctic from AIRS satellites lately.”
So, let's have a look at the methane levels for those days. The image below shows the methane levels for the above two days.


Paul continues:
“This is what abrupt climate change looks like. In the paleorecords global average temperatures increased over 6 degrees C within a decade or two, I suppose we will know more precise numbers in a few short years.”

Paul repeats the prediction he made back in June in this the post When the sea ice is gone
Paul Beckwith, B.Eng, M.Sc. (Physics),
Ph. D. student (Climatology) and
Part-time Professor, University of Ottawa
My projections for our planet conditions when the sea-ice has all vanished year round (PIOMAS graph projects about 2024 for this; I forecast 2020 for this) are:
  • Average global temperature: 22°C (+/- 1°C)
    (rise of 6-8°C above present day value of about 15°C)
  • Average equatorial temperature: 32°C
    (rise of 2 °C above present day value of 30°C)
  • Average Arctic pole temperature: 10°C
    (rise of 30°C above present day value of -20°C)
  • Average Antarctica pole temperature: -46°C
    (rise of 4°C above present day value of -50°C)
  • Water vapor in atmosphere: higher by 50%
    (rise of 4% over last 30 years, i.e. about 1.33% rise per decade)
  • Average temperature gradient from equator to North pole: 22°C
    (decrease of 28°C versus present day value of 50°C)
  • Very weak jet streams (driven by N-S humidity gradient and weak temperature gradient as opposed to existing large temperature gradient)

- Result: very fragmented, disjointed weather systems
- Basic weather: tropical rainforest like in some regions; arid deserts in others with few regions in between.

Note: This scenario would require significant emissions of methane from the Arctic. Without this methane, the scenario would still occur but would take longer. Disclaimer: Best guess and subject to rolling revisions!

Meanwhile, extreme weather continues to strike areas outside the Arctic. In the U.K, airports were closed due to snow, following a period of heavy rainfall in November.

In Russia, extreme weather caused a huge traffic jam; see the BBC reports here and here, prompting Veli Albert Kallio, also one of this blog's contributors, to make the following comments:
Veli Albert Kallio in front of Peter Wadhams and John Nissen at
APPCCG event, March 13, 2012, House of Commons, London
“The Ewing-Dunn Precipitation (the lake-effect snow) from warmed-up Arctic Ocean has taken the Russian Government's winter preparations by suprise of its severity, with the Russian Government minister banging his fist as standing queues of vehicles reoccurs and is now 190 kilometres (120 miles) long between the capital Moscow and St. Petersburg.

I have been warning from the leaked files since July at this and other groups that December 2012 was going to be like this. We need to tell the Russian Interior Minister who bangs his fist on TV that he should not blame his road officials, but the global warming and loss of sea ice from the Barents and Kara Seas and generally warmed up North Atlantic - Arctic Ocean regions.”

Saturday, December 1, 2012

Aviation Policies

The European Union's policy on Aviation Emissions

From the start of 2012, the European Union (EU) required its members to include emissions from flights arriving at and departing from their airports in the EU scheme of emissions allowances and trading, while encouraging other nations to take equivalent measures. The EU exempts biofuel and claims to take a 'comprehensive approach' to reducing environmental impacts of aviation. To create space for political negotiations to get an international agreement regulating emissions from aviation, the EU has meanwhile postponed implementation of its directive by one year.

What kind of international agreement could be reached on aviation emissions? What policies work best? How do aviation policies fit into a comprehensive approach?

A Comprehensive Plan of Action on Climate Change

A comprehensive plan is best endorsed globally, e.g. through an international agreement building on the Kyoto Protocol and the Montreal Accord. At the same time, the specific policies are best decided and implemented locally, e.g. by insisting that each nation reduces specific emissions by a set annual percentage, and additionally removes a set annual amount of carbon dioxide from the atmosphere and the oceans, followed by sequestration, proportionally to its current emissions.

Policy goals are most effectively achieved when policies are implemented locally and independently, with separate policies each addressing the specific shifts that are each needed to reach agreed targets. Each nation can work out what policies best fit their circumstances, as long as they each independently achieve agreed targets. Counting emissions where they occur will encourage nations to adopt effective policies, such as imposing fees on the sales of products in proportion to the emissions they cause, and adopting product standards that ban products that would otherwise cause unacceptably high emissions while clean alternatives are readily available.


Clean Energy Policies

Policies aiming to achieve a shift to clean energy will apply to many sectors such as transportation (including aviation), power plants, and industry and buildings which are also large consumers of fossil fuel. The above image also shows policies specifically targeting aviation, in addition to clean energy policies that apply across sectors.

The image below proposes feebates as the most effective way to accomplish the necessary shift to clean energy. In such feebates, fees are imposed on polluting energy and associated facilities, with revenues used - preferably locally - to fund rebates on clean energy and associated facilities.


In line with such feebates, each nation could impose fees on jetfuel, while using the revenues for a variety of purposes, preferably local clean energy programs. Where an airplane lands arriving from a nation that has failed to add sufficient fees, the nation where the airplane lands could impose supplementary fees. Such supplementary fees should be allowed under international trade rules, specifically if revenues are used to fund direct air capture of carbon dioxide.

Aviation Policies

As said, apart from clean energy policies, it makes sense to additionally implement policies specifically targeting aviation. Airplanes not only cause carbon dioxide emissions, but also cause other emissions such as black carbon and NOx, contrails and cirrus cloud effects. The EU emissions scheme only targets a limited set of emissions, while also looking at their global warming potential, rather than the potential of emissions to cause warming locally, specifically in the Arctic. A joint 2011 UNEP/WMO report mentioned many measures to reduce black carbon and tropospheric ozone, adding that their implementation could reduce warming in the Arctic in the next 30 years by about two-thirds.

A 2012 study by Jacobson et al. concludes that cross-polar flights by international aviation is the most abundant direct source of black carbon and other climate-relevant pollutants over the Arctic. Rerouting cross-polar flights to instead circumnavigate the Arctic Circle therefore makes sense. While such rerouting consumes more fuel, it could reduce fuel use and emissions within the Arctic Circle by 83% and delay pollutant transport to the Arctic.

Given the need to act on warming in the Arctic, it makes sense to ban cross-polar flights. To further reduce the flow of pollutants to the Arctic caused by aviation, it makes sense to add fees on all jet flights. Such fees on jet flights would be additional to the above fees on fuel. This could further facilitate a shift from aviation toward cleaner forms of transportation, such as high speed rail. Where the revenues of such fees are used to fund direct air capture, they could also help kickstart an industry that could produce synthetic jetfuel and that could be instrumental in bringing atmospheric levels of carbon dioxide back to 280ppm.

Monday, November 26, 2012

Climate management will be the key to massively improving renewable energy performance and the eradication of poverty

By Bru Pearce

Bru Pearce,  AMEG member
who works at Envisionation Ltd
Climate management is going to be essential to improve the efficiency and cost of renewable energy and enable rapid decarbonisation of world’s energy generation systems to avoid catastrophic climate change. Ultimately control of our regional weather will be the solution to our greatest problems.

In a previous post ‘Geo engineering after the auto pilot has been turned off ‘ I concluded with the statement, “The time is coming to embrace geo-engineering, (after all we already have 4 billion years of experience in it behind us!).”

I was making the point that primeval life began changing our planets climate almost from its very first existence and that man as a recent incarnation in evolution has been significantly effecting the climate since we first hunted species to extinction and started cutting down huge swaths of forest to convert to agricultural lands.

Of course none of mans early efforts at geoengineering compare to the colossal scale of our latest experiment: that of practically doubling atmospheric CO2 in the last 200 years. 75% of which has been emitted in the last 50 years, in line with our spectacular population growth.

I spent the weekend of 3rd November at the Arctic Methane Emergency Group’s workshop on ‘how to cool the Arctic’ with the objective of retaining the sea ice in order to prevent massive methane release and in the hope of re-stabilising the jet stream. (It is the Jet Stream that in the last few years has become increasingly convoluted and led to the extremes of weather now being experienced in the Northern Hemisphere).

The premise of this meeting was that we do not have the time or the capability to implement a switch to an all renewable energy paradigm and that even if we did cut out our CO2 emissions entirely, at 400 ppm we have already set the planet up for 3 to 4 C° of warming.

Methane hydrates from the defrosting Arctic sea beds are already beginning to enter the atmosphere which will trigger numerous other feedback loops and lead to runaway global warming. Therefore we are going to have to take emergency measures and actively cool the Arctic in order to buy time in which to stabilise and decarbonise the atmosphere.

A truly dire situation, but the encouraging part about the meeting was that it would appear that the necessary technologies to manage our climate are within our grasp.

Many people shudder at the thought of engineering our climate, but given that we have, initially unwittingly but now knowingly, engineered our way deeper into the situation, we should not be surprised at the need to engineer a correction.

So I got to thinking about what climate management could do for us?

Here’s my list:
  • Massively improve the efficiency of our renewable engineering capabilities by:
    - Ensuring consistent winds
    – leading to greatly improved wind farm efficiency- Ensuring clear skies and massively upping the efficiency of photovoltaic’s as well as allowing radiated heat to escape into space at night 
  • Produce predictable rainfall, not just the amount, but when and where. This can open up many more hydroelectric power opportunities 
  • Increase agricultural output, for food and for biofuels 
  • Deliver water to all populations 
  • Provide perfect weather for tourism resorts, sunny days and snow in ski resorts 
  • Greening deserts opening up new agricultural land, (much better than cutting down forests for agriculture) 
  • Protect and preserve forests from drought 
  • All of the above collectively leading to the eradication of poverty 
In fact the more I think on it, the more obvious it is that humanity is going to have to take control of our climate. Firstly to avoid catastrophe and secondly to ensure that the all-renewable energy economy can become a reality, capable of supporting the power needs of 9 billion people, to the same modern standards that we all wish to achieve. It is essential to achieve this without destroying what is left of our natural environment and genetic diversity.

Ok it sounds utopian, but it is the future we want, the alternative is an unimaginable horror story. We are capable to of achieving great things; why on Earth would we not?

So how do we get there?

We are going to have to establish some very clear international rules:
  • A target to reduce and maintain CO2 at 280ppm as per the last 12,000 of the Holocene, (with further small corrective increases as necessary over time to prevent the decline into the next ice age) 
  • Sea level to be maintained at current levels 
  • Ice and snow extent to stay within the norms of the 20th century averages 
  • Systems will have to be put in place to manage microclimate change with planning proposals and applications over any changes in river water volume. And special applications will have to be made for desert recovery. With detailed studies into knock on impacts on other areas. 
  • Key features of natural cycles will have to be retained, but this does not mean that hurricanes, forest fires, floods and drought cannot be managed. 
Actions

It should be possible to ensure that most rain falls in the morning and evenings, while still maintaining the continuity of seasonal changes.

Being able to control the weather means knowing the weather in advance and being able to rely on it. Trade winds blowing consistently will make it possible to power ships by sail and for windmills to turn constantly.

It will be even more important for countries that are maintaining rain forests and other large areas of the climate management biosphere, to be compensated by the industrialised and agriculturalised parts of the world for the services they provide. Those services will need to be measured and brought into the dynamics of the new global economy.

In order to take control of our climate we first need to fully understand it. This means that our current efforts to monitor the biosphere need to be massively upgraded. Monitoring systems across the ocean surfaces and depths, on land and in the atmosphere, need to be installed to fully cover the planet. So that every small change can be recorded and its impacts identified.

An appropriate scale might be something like a one for every 100km2. With the data made available to a number of separate super computers that can give us a full evaluation of how the earth systems work. Of necessity this will require integrating the operation of the world economy, crop production, population and all other human dynamics. A huge undertaking that needs to be mans greatest and most urgent endeavour. (For more on this take a look at the International Centre for Earth Simulation foundation web site http://www.icesfoundation.org)

Total management of Earth’s climate will take time. It is something to work towards, although we may have to take emergency measures to cool the Arctic very soon. Small scale tests and research should begin immediately and be given all the funding necessary, so that we can meet the emergency and quickly deliver a fully renewable energy economy.

Learning to engineer our climate holds great promises for all life on earth and can make the dream of an all-clean energy future come true. I believe we can and have to do this.

The Growing Threat of Catastrophic Storm Surge in the Next 30 Years on a Fast, Global Warming Induced, Sea Level Rise and its Consequences for Coastal Cities and Humanity

By Malcolm P.R. Light
November 11, 2012

Abstract

Methane is erupting as widespread torches and fountains in the Arctic ocean up to 1 km across and is exponentially increasing in concentration in the Arctic atmosphere (Shakova et al. 2008 and 2010; Light and Carana 2012; Light 2012). The Arctic atmospheric methane is mostly derived from Arctic subsea shelf and slope methane hydrates due to their destabilization by globally warmed Gulf Stream currents which enter the Arctic west of Svalbard and through the Barents Sea. In the North Atlantic, the surface of the Gulf Stream is heated in the summer and is marked by excessive evaporation due to the global warming effects of pollution clouds emanating from North America (Figure 5; IPCC Working Group 1. Fig. 10.12 Lavatus Prodeo, 2012).
The exponential increase in Arctic atmospheric methane has caused an exponential decrease in the volume of Arctic sea ice and in the continent wide reflectivity (albedo) of the Greenland ice cap (Light 2012; NASA Mod 10A1 data, from Carana, 2012). The atmospheric Arctic methane which is almost half the density of air is rising like hydrogen into the Stratosphere where it is forming and all encompassing global warming veil further aggravating the global warming of the lower level greenhouse gas clouds.

The ice melt back curves from the oldest lower 5* year old ice to the youngest shallowest 2 and 1 year old ice are caused by the progressive increase in temperature of the Gulf Stream “Atlantic Waters” which are entering the Arctic beneath the ice and melting it from the bottom up. The heating of the Gulf Stream waters is directly linked to the global warming of the North Atlantic caused by green house gas pollution blowing east off North America.

Above summary diagram (Figure 15, click on image to enlarge) shows all the determined global warming temperature curves and the latest "Sandy" storm surge curve based on a mean storm surge of 14 feet added to the mean latent heat of ice melting curve (Light 2012; Fichetti, 2012). All the global warming curves converge on a region between 2034 and 2052 where the mean atmospheric temperature anomaly will be greater than 8°C and all of the Earth's ice caps will have melted with a consequent sea level rise of 68.3 m (224 feet) above mean sea level (Wales, 2012). In particular the accelerated global warming curve from Carana (2012) and the "Sandy" storm surge curve converge on the mean atmospheric temperature extinction point derived from 20 estimates (Light 2012). This gives great confidence in the interpretation that we can expect catastrophic climate change from methane induced global warming between 2034 and 2052 unless humanity sharply cuts back some 90 to 95% on global greenhouse gas emissions and converts all its energy resources to renewable energy/ nuclear power.

A series of progressive extinction zones have been determined (after Parry et al. 2007) and include:-
  • Bleaching of most corals when the atmospheric temperature anomaly is between 1 and 2°C
  • Extreme droughts will extend over 1 - 30% of the land area when the atmospheric temperature anomaly exceeds 2°C which will make more than 1.8 billion people water stressed.
  • Widespread coral mortality will occur when the mean atmospheric temperature anomaly is between 2.5°C and 3.5°C and will be associated with a massive increase in the ferocity of tropical cyclones/hurricanes far in excess of the Sandy super storm.
  • Complete deglaciation and coastal inundation is expected when the mean atmospheric temperature anomaly increases from 4 to 8°C with a consequent sea level rise of some 68.3 metres (224 feet) above sea level. There will be major global extinction over this temperature interval as cereal production sharply decreases outside of the tropics.
Super storm Sandy has shown that Manhattan is already open to storm surge flooding and by 2016 when the Arctic Ocean begins to be free of ice, we can expect more violent hurricanes bearing down on the eastern coastline of the United States and increasing catastrophic damage to the coastal cities there.

The Alamo Project is a call for United States scientists and engineers to volunteer to develop a system of destroying the fast growing methane clouds in the atmosphere by radio/laser means or other processes before they destroy us. See this page:-
http://www.facebook.com/AlamoProject

Immediate and concerted action must be taken by governments and oil companies to depressurize the Arctic subsea methane reserves by extracting the methane, liquefying it and selling it as a green house gas energy source (see the ANGELS Project). See this post:-
http://arctic-news.blogspot.com/2012/06/angels-proposal.html

If greenhouse gas emissions are not sharply curtailed by 90% to 95% and the Arctic subsea and atmospheric methane extracted and destroyed, mean rising sea levels will breach the Thames Barrier by 2029 flooding London and the proposed Verrazano Narrows barrier in New York by 2030. The base of the Washington Monument (D.C.) will be inundated by 2031. By 2051, total global deglaciation will finally cause the sea level to rise up the lower 35% of the Washington Monument and humanity will have been eliminated by worldwide flooding and firestorms.


Thursday, November 15, 2012

Arctic methane: Why the sea ice matters



Arctic methane: Why the sea ice matters 
a new film by Envisionation.co.uk
Interviews with:
James Hansen - NASA
Natalia Shakhova - IARC
Peter Wadhams - Cambridge University, UK
David Wasdell - Apollo-Gaia Project



Arctic Methane: Why The Sea Ice Matters

James Hansen: If it begins to allow the Arctic Ocean to warm up and warm the ocean floor, then we'll begin to release methane [from] hydrates, and if we let that happen, that's a potential tipping points that we don't want to pass. There are now observations that methane is beginning to be released by both melting tundra on the land and bubbling up in the Arctic Ocean, indicating some warming of the Arctic Ocean.

Natalia Shakhova: The total amount of methane in the current atmosphere is about 5 Gt. The amount of carbon preserved in the form of methane in the East Siberian Arctic Shelf is ~ from hundreds to thousands Gt. What divides this methane from the atmosphere is a very shallow water column and a weakening permafrost, which is losing its ability to serve as a seal. This area is very seismically and tectonically active and there was some investigation that the tectonic activity is increasing.

Peter Wadhams: At the rate we're going, it will bring us to an ice-free Arctic in about four years time. [The Arctic Ocean] now warms up to about 5 degrees [5°C or 41°F, i.e.] enough to start warming up the seabed. The seabed at the moment is frozen, but it's now starting to melt. That's allowing a lot of methane which is trapped under the permafrost to be released. That's a large boost to global warming, because methane is an extremely powerful climatically-active gas. 

David Wasdell: The warm water from the surface is now being mixed down to those areas that it never reached when the whole area was covered in sea ice. As soon as the area is open water, you have a process of heating that goes right down to those clathrate deposits on the seabed. The more the methane is released into the atmosphere, the faster the heating goes. It's probably the greatest threat we face, as a planet. We're already in a mass extinction event.

Did Sandy trigger major earthquakes off Vancouver?

The NASA image below gives an impression of the strengtrh of hurricane Sandy, as it approached the U.S. coast on October 28, 2012. 

Image produced with data from a radar scatterometer on the Indian Space Research Organization’s (ISRO) Oceansat-2,
showing the strength and direction of Sandy’s ocean surface winds on October 28, 2012.

This animation was created by Alex Hutko, a seismologist at the Incorporated Research Institutions for Seismology (IRIS) in Seattle. It shows how seismic stations lit up as hurricane Sandy continued its path.

The images below are screenshots from the animation, showing how three eathquakes hit the coast off British Columbia in Canada, coinciding with large tremors caused by Sandy. A 7.7 magnitude earthquake (image below) hit the coast off Vancouver on October 28, 2012, at around 2:00 EDT. The USGS later upgraded the earthuake to magnitude 7.8 and gave the time as 3:04 UTC.
 
 
A 6.3 earthquake below hit the area the same day (October 28, 2012) at 17:00 EDT (USGS: 18:54 UTC).
 
 
A 6.2 earthquake (image below) followed on October 30, 2012.
 
 
The USGS image below gives further time and location details of these earthquakes using UTC time. 
 
 
There were more earthquakes than that. At the USGS site, I counted 90 further earthquakes in the area with a magnitude of at least 4 that occurred within days of the first earthquake.
 
Paul Beckwith, regular contributor to this blog, gives the following comments on the question whether Sandy was the trigger for major earthquakes off Vancouver.
“Sandy was a massive storm, packing an enormous amount of energy. According to Jeff Master's Wunderground blog, she carried the energy equivalent of five Hiroshima sized nuclear bombs.
 
As she approached the eastern seaboard of the United States she was detected on the seismic stations in the U.S. As she moved her large size (tropical storm winds within a 900 mile diameter) and extremely low pressure center (940 mb usually indicative of Category 3 or even 4 magnitude hurricanes), she sucked enormous quantities of ocean water upward.
 
Clearly, this adds tremendous stresses onto the earths crust and pushes it downward; this was reflected in the seismic stations. The animation of her progress shows the ground stresses across North America between October 14th and November 1st. On her northward jaunt up the eastern coast the seismic strain lit up to a peak and there was a 7.8 magnitude earthquake (Oct 28th, 3:04 UTC) off Vancouver, as shown in the first image.
 
As she continued northward and just before her extremely unusual left turn (due to extreme waviness of Rossby wave jet streams leading to continental low and northward tilted blocking high), there was another maximum of red seismic activity and a 6.3 magnitude aftershock (October 28, 18:54 UTC).
 
Then she turned left and as she crossed the coastline just south of NYC there was a second large aftershock of 6.2 magnitude (October 30, 2:38 UTC). Again, this aftershock coincided with large seismic activity indicated in red on the east coast.
 
Coincidence? I think not. Stress on one side of a continental plate (North American plate in this case) can deflect the plate downward locally and cause it to bow up or down afar, i.e. on the other side of the plate of the west coast). The precise coincidence of the timing for the main quake and the 2 aftershocks with peaks of seismic activity on the eastern coast seems to match too closely to be a mere coincidence, but more study is required.”

In conclusion, there is a danger that storms and cyclones trigger submarine earthquakes, which can in turn cause shockwaves and landslides over a wide area, destabilizing hydrates and triggering massive releases of methane in the process. As the sea ice disappears, the Arctic Ocean increasingly features open waters which are more prone to cyclones.

Wednesday, November 14, 2012

Arctic Sea Ice set to collapse in 2015

The image below depicts Arctic sea ice volume as calculated by PIOMAS (the Pan-Arctic Ice Ocean Modeling and Assimilation System at the Polar Science Center

Total Arctic sea ice volume from PIOMAS showing the volume of the mean annual cycle.

Below, the average monthly volume data over the years with exponential trends added by Wipneus, incorporating the data for November 2012. 
In November 2012, the average Arctic sea ice thickness over ice-covered regions fell below one meter, as illustrated by the image below. 
Average Arctic sea ice thickness over the ice-covered regions from PIOMAS for a selection of years.
The average thickness is calculated for the PIOMAS domain by only including locations where ice is thicker than .15 m
As the sea ice gets thinner, the risk increases that the ice will break up. More open water makes the Arctic Ocean more prone to storms and associated feedbacks that can be expected to speed up such break up. Furthermore, they can push much of the ice into the Atlantic Ocean, leaving little ice in the Arctic Ocean to reflect sunlight back into space and to act as a buffer when temperatures start rising again the following year. For more on such feedbacks, see the post Diagram of Doom

Professor Peter Wadhams warns in an article in Scientific American that the rate at which summer melting is outstripping accumulation of new ice in winter makes the entire ice cover likely to collapse by 2015. Less ice means that less sunlight will be reflected back into space; as a result, warming in the Arctic will accelerate dramatically. Because a third of the Arctic Ocean is composed of shallow shelf seas, surface warming will extend to the seabed, melt offshore permafrost and trigger the release of methane, which has a much greater greenhouse warming effect than CO2. A Russian-U.S. expedition led by Igor Semiletov has recently observed more than 200 sites off the coast of Siberia where methane is welling up from the seabed. Atmospheric measurements also show that methane levels are rising, most likely largely from Arctic emissions. To avoid the consequences of a collapse of summer ice, we need to bring back the ice we have lost. That will require more than merely slowing the pace of warming—we need to reverse it, Professor Wadhams adds.