Showing posts with label climate. Show all posts
Showing posts with label climate. Show all posts

Friday, August 29, 2014

No new laws needed for President Obama to act

For anyone attending the September 23, 2014, Climate Summit in New York, it is important to bring the message that, while Congress may seek to deny the physical and legal realities, President Obama can and should act on climate change.


As you know, Sam Carana advocates comprehensive and effective action as discussed at the Climate Plan blog. You can share the message on facebook by clicking on the image below.


Links

- Climate Summit (Wikipedia)
http://en.wikipedia.org/wiki/Climate_Summit

- U.N. Climate Summit 2014
http://www.un.org/climatechange/summit

- Climate Plan
http://climateplan.blogspot.com



Friday, July 18, 2014

Smoke Blankets North America


A thick layer of smoke blankets large parts of North America, as also illustrated by the animation below based on images from July 15 to 18, 2014, from Wunderground.com.

[ note that this animation is a 2.3MB file that may take some time to fully load ]
The are also extensive wildfires throughout the boreal forest and tundra zones of Central Siberia in Russia.

Such wildfires can send huge amounts of carbon dioxide, methane, soot, dust and volatile organic compounds into the atmosphere. Much of this gets deposited at higher latitudes, discoloring land, snow and ice, and thus speeding up warming by absorbing more sunlight that was previously reflected back into space.

Soils at higher latitudes can contain huge amounts of carbon in the form of peat, as described in the earlier post The Threat of Wildfires in the North. There are further conditions that make the situation in the Arctic so dangerous.
Temperature anomaly March-April-May-June 2014 (JMA)

The Arctic is particularly vulnerable to warming due to geographics. Seas in the Arctic Ocean are often shallow and covered by sea ice that is disappearing rapidly. Largely surrounded by land that is also rapidly losing its snow and ice cover, the Arctic Ocean acts like a trap capturing heat carried in by the Gulf Stream, which brings in ever warmer water. Of all the heat trapped on Earth by greenhouse gases, 90% goes into oceans, while a large part of the remaining 10% goes into melting the snow and ice cover in the Arctic, as described in an earlier post. Such basic conditions make that the Arctic is prone to warming.

Then, there are huge amounts of methane held in sediments under the Arctic Ocean, in the form of hydrates and free gas. Unlike methane releases from biological sources elsewhere on Earth, methane can be released from the seafloor of the Arctic Ocean in large quantities, in sudden eruptions that are concentrated in one area.

Until now, permafrost and the sea ice have acted as a seal, preventing heat from penetrating these methane hydrates and causing further destabilization. As long as there is ice, additional energy will go into melting the ice, and temperatures will not rise. The ice also acts as a glue, keeping the soil together and preventing hydrate destabilization from pressure changes and shockwaves resulting from seismic activity. Once the ice is gone, sediments become prone to destabilization and heat can more easily move down along fractures in the sediment, reaching hydrates that had until then remained stable.
 
Temperature anomaly March-April-May 2014 (NASA)
When methane escapes from the seafloor of the Arctic Ocean and travels through waters that are only shallow, there is little opportunity for this methane to be broken down in the water, so a lot of it will enter the atmosphere over the Arctic Ocean. The Coriolis effect will spread the methane sideways, but latitudes over the Arctic are relatively short, making the methane return at the same spot relatively quickly, while the polar jet stream acts as a barrier keeping much of the methane within the Arctic atmosphere. In case of large methane eruptions, the atmosphere over the Arctic will quickly become supersaturated with methane that has a huge initial local warming potential.

Hydroxyl levels in the atmosphere over the Arctic are very low, extending the lifetime of methane and other precursors of stratospheric ozone and water vapor, each of which have a strong short-term local warming potential. In June/July, insolation in the Arctic is higher than anywhere else on Earth, with the potential to quickly warm up shallow waters, making that heat can penetrate deep into sediments under the seafloor.

created by Sam Carana, part of AGU 2011 poster
The initial impact of this methane will be felt most severely in the Arctic itself, given the concentrated and abrupt nature of such releases, with the danger that even relatively small releases of methane from the seafloor of the Arctic can trigger further destabilization of hydrates and further methane releases, escalating into runaway warming.

This danger is depicted in the image on the right, showing how albedo changes and methane releases act as feedbacks that further accelerate warming in the Arctic, eventually spiraling into runaway global warming.

The currently very high sea surface temperature anomalies are illustrated by the two images below.




As the image below right shows, sea surface temperatures as high as 18 degrees Celsius (64.4 degrees Fahrenheit) are currently recorded in the Arctic.

Albedo changes and methane releases are only two out of numerous feedbacks that are accelerating warming in the Arctic.

Also included must be the fact that Earth is in a state of energy imbalance. Earth is receiving more heat from sunlight than it is emitting back into space. Over the past 50 years, the oceans have absorbed about 90% of the total heat added to the climate system, while the rest goes to melting sea and land ice, warming the land surface and warming and moistening the atmosphere.

In a 2005 paper, James Hansen et al. estimated that it would take 25 to 50 years for Earth’s surface temperature to reach 60% of its equilibrium response, in case there would be no further change of atmospheric composition. The authors added that the delay could be as short as ten years.

Earth's waters act as a buffer, delaying the rise in land surface temperatures that would otherwise occur, but this delay could be shortened. Much of that extra ocean heat may enter the atmosphere much sooner, e.g. as part of an El Niño event. Another buffer, Arctic sea ice, could collapse within years, as illustrated by the image below.

[ click on image to enlarge ]
The demise of sea ice comes with huge albedo changes, resulting in more heat getting absorbed by the Arctic Ocean, in turn speeding up warming of the often shallow waters of the Arctic Ocean. This threatens to make heat penetrate subsea sediments containing huge amounts of methane. Abrupt release of large amounts of methane would warm up the Arctic even more, triggering even further methane releases in a spiral of runaway warming.

Particularly worrying is the currently very warm water that is penetrating the Arctic Ocean from the Atlantic Ocean and also from the Pacific Ocean, as illustrated by the image further above and the image on the right.

The danger is that the Arctic will warm rapidly with decline of the snow and ice cover that until now has acted as a buffer absorbing heat, with more sunlight gets absorbed due to albedo changes and as with additional emissions, particularly methane, resulting from accelerating warming in the Arctic.

The numerous feedbacks that accelerate warming in the Arctic are pictured in the image below.

[ from: climateplan.blogspot.com/p/feedbacks.html ]
Furthermore, the necessary shift to clean energy will also remove the current masking effect of aerosols emitted when burning fuel. One study finds that a 35% – 80% cut in people's emission of aerosols and their precursors will result in about 1°C of additional global warming.

In the video below and the video further down below, Guy McPherson discusses Climate Change and Human Extinction.





This is further illustrated by the image below, showing how surface temperature rises are accelerating in the Arctic compared to global rises, with trendlines added including one for runaway global warming, from How many deaths could result from failure to act on climate change?
[ click on image to enlarge ]
The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan blog.

Hat tip to Jim Kirkcaldy for pointing at the wildfire development at an early stage.

Friday, July 4, 2014

Climate Plan

This image sums up the lines of action, to be implemented in parallel and as soon as possible, and targets of the Climate Plan, in order to avoid climate catastrophe.

The Climate Plan and its various parts have been discussed in many post at Arctic-news blog over the years.

Now is the time to support the Climate Plan and to make sure that it will be considered at many forums, such as the Climate Summit, to be held September 23, 2014, at the U.N. Headquarters in New York, and preparations for the UNFCCC Climate Change Conference in Paris in 2015.

Please show your support by sharing this text and the image widely!


Emission cuts

In nations with both federal and state governments such as the U.S., the President (or Head of State or Cabinet, basically where executive powers are held) can direct:
  • federal departments and agencies to reduce their emissions for each type of pollutant annually by a set percentage, say, CO2 and CH4 by 10%, and HFCs, N2O and soot by higher percentages.
  • the federal Environmental Protection Agency (EPA) to make states each achieve those same reductions. 
  • Target: 80% cut everywhere for each type of pollutant
    by 2020 (to be managed locally provided targets are met)
  • the EPA to monitor progress by states and to step in with more effective action in case a state looks set to miss one or more targets.
    (More effective action in such a case would be to impose (federal) fees on applicable polluting products sold in the respective state, with revenues used for federal benefits. Such federal benefits could include building interstate High-Speed Rail tracks, adaptation and conservation measures, management of national parks, R&D into batteries, ways to vegetate deserts and other land use measurements, all at the discretion of the EPA. Fees can be roughly calculated as the average of fees that other states impose in successful efforts to meet their targets.)
Similar policies could be adopted elsewhere in the world, and each nation could similarly delegate responsibilities to states, provinces and further down to local communities.

Carbon dioxide removal and storage
Target: restore atmosphere and ocean to long term average
by 2100 (with each nation's annual contributions to reflect
its past emissions)

Energy feebates can best clean up energy, while other feebates (such as pictured in the above diagram) can best raise revenue for carbon dioxide removal. Energy feebates can phase themselves out, completing the necessary shift to clean energy within a decade. Carbon dioxide removal will need to continue for much longer, so funding will need to be raised from other sources, such as sales of livestock products, nitrogen fertilizers and Portland cement.

A range of methods to remove carbon dioxide would be eligible for funding under such feebates. To be eligible for rebates, methods merely need to be safe and remove carbon dioxide.

There are methods to remove carbon dioxide from the atmosphere and/or from the oceans. Rebates favor methods that also have commercial viability. In case of enhanced weathering, this will favor production of building materials, road pavement, etc. Such methods could include water desalination and pumping of water into deserts, in efforts to achieve more vegetation growth. Selling a forest where once was a desert could similarly attract rebates.

Some methods will be immediately viable, such as afforestation and biochar. It may take some time for methods such as enhanced weathering to become economically viable, but when they do, they can take over where afforestation has exhausted its potential to get carbon dioxide back to 280ppm.

Additionally, conservation and land use measures could help increase carbon storage in ecosystems.

Solar radiation management

Target: prevent Arctic Ocean from warming by more
than 1°C above long term average (U.N. supervised)
Apart from action to move to a more sustainable economy, additional lines of action are necessary to reduce the danger of runaway global warming.

Extra fees on international commercial aviation could provide funding for ways to avoid that the temperature of the atmosphere or the oceans will rise by more than 1°C above long term average.

Due to their potential impact across borders, these additional lines of action will need ongoing research, international agreement and cooperation.

Land, clouds, wind, water, snow and ice management

Target: increase Arctic snow and ice cover (U.N.
supervised) and restore it to its long term average 
Apart from action to move to a more sustainable economy, additional lines of action are necessary to reduce the danger of runaway global warming.

Extra fees on international commercial aviation could also provide funding for ways to cool the Arctic and restore the snow and ice cover to its long term average extent.

As said, due to their potential impact across borders, these additional lines of action will need ongoing research, international agreement and cooperation.

Methane management and further action

Target: relocate vulnerable Arctic clathrates (U.N. supervised)
and restore mean atmospheric CH4 level to long term average
by 2100 (with each nation's annual contributions to reflect its
past emissions.
Further action is needed to avoid that huge quantities of methane will abruptly erupt from the seafloor of the Arctic Ocean.

Vulnerable hydrates should be considered to be relocated under U.N. supervision.

Besides this, local action can be taken to reduce methane levels in the atmosphere with each nation's annual contributions to reflect its past emissions.

Adaptation, conservation and land use measures could further improve the situation.

The comprehensive and effective action of the Climate Plan will reduce the threat of runaway warming, and this will have obvious benefits for the environment and for species threatened with extiction.

Besides this, this will also save people money, will improve people's health and safety, will increase security of food and fresh water supply, will make energy supply and the electric grid more efficient, safe, robust and reliable, will reduce perceived needs for military forces to police fuel supply lines globally, and will create numerous local job and investment opportunities.


Please support, follow and discuss the Climate Plan at facebook.com/ClimatePlan and at ClimatePlan.blogspot.com



Saturday, February 22, 2014

With business as usual life on earth is largely doomed

by John Davies

There is a very grave crisis in the Arctic which might only be resolved if the world uses geo-engineering to cool the Arctic and there are drastic cuts in greenhouse gas emissions.

Failing that most life on earth is doomed including humanity with devastating climate catastrophe starting no later than 2015 and a runaway Greenhouse Event starting in 2014.

I am sure that with an immense effort starting now humanity can be saved.

I am trying to obtain a meeting of the All Party Parliamentary Committee on Climate Change to discuss the desperate situation in the Arctic and the prognosis that with business as usual life on earth is largely doomed and also the steps humanity must take to save the global climate in April.

[ to be continued ]

Saturday, February 8, 2014

CO2 growth highest on record

Despite many promises, global emissions of carbon dioxide (CO2) continue to grow.

NOAA figures show that 2013 CO2 level growth was the highest ever recorded, i.e. 2.95 ppm.

The EPA expects U.S. 2013 energy-related CO2 emissions to be 2% higher than in 2012.

The UC San Diego image below shows CO2 levels in the atmosphere over the past two years.

Back in September 2013, John Davies warned: The world is probably at the start of a Runaway Greenhouse Event which will end most human life on Earth before 2040. This will occur because of a massive and rapid increase in the carbon dioxide concentration in the air which has just accelerated significantly. The increasing Greenhouse Gas concentration, the gases which cause Global Warming, will very soon cause a rapid warming of the global climate and a chaotic climate.

The post featured a graph with a 4th-order polynomial trendline pointing at some 7.5 ppm CO2 annual growth by 2040. While many welcomed the warning contained in the graph, some argued against using higher-order polynomial trendlines. So, for those who don't feel comfortable with a 4th-order polynomial trendline, the graph below adds both a linear trendline and a 3rd-order polynomial trendline.



The 3rd-order polynomial trendline, based on the recent data, points at CO2 annual growth of some 7 ppm by 2040, justifying the warning sounded by the 2013 graph.

And what do the recent data say, when a 4th-order polynomial trendline is applied? As the image below shows, they show an even steeper rise, reaching 7 ppm growth per year as early as 2030.



As many posts at this blog have warned, rapid growth in greenhouse gases and numerous feedbacks are threatening to push Earth into runaway global warming. This calls for comprehensive and effective action to - among other things - reduce atmospheric CO2 levels back to 280 ppm, as illustrated by the image below and as further discussed at the Climate Plan blog.


Saturday, February 1, 2014

Abrupt Climate Change - by Paul Beckwith

by Paul Beckwith

Humans have benefited greatly from a stable climate for the last 11,000 years - roughly 400 generations. Not anymore. We now face an angry climate. One that we have poked in the eye with our fossil fuel stick and awakened. Now we must deal with the consequences. We must set aside our differences and prepare for what we can no longer avoid. And that is massive disruption to our civilizations.

In a nutshell, the logical chain of events occurring is as follows:
  1. Greenhouse gases that humans are putting into the atmosphere from burning fossil fuels are trapping extra heat in the earth system (distributed between the oceans (93%), the cryosphere (glaciers, ice sheets, sea ice for 3%), the earth surface (rocks, vegetation, etc. for 3%) and the atmosphere (only an amazingly low 1%). The oceans clearly get the lions share of the energy, and if that 1% heating the atmosphere varies there can be decades of higher or lower warming, as we have seen recently. This water vapor rises and cools condensing into clouds and releasing its stored latent heat which is increasing storm intensity.
  2. (i)Rapidly declining Arctic sea ice (losing about 12% of volume per decade) and (ii)snow cover (losing about 22% of coverage in June per decade) and (iii)darkening of Greenland all cause more solar absorption on the surface and thus amplified Arctic warming (global temperatures have increased (on average) about 0.17oC per decade, the Arctic has increased > 1oC per decade, or about 6x faster)
  3. Equator-to-Arctic temperature difference is thus decreasing rapidly
  4. Less heat transfer occurs from equator to pole (via atmosphere, and thus jet streams become streakier and wavier and slower in west-to-east direction, and via ocean currents (like Gulf Stream, which slows and overruns continental shelf on Eastern seaboard of U.S.)
  5. Storms (guided by jet streams) are slower and sticking and with more water content are dumping huge torrential rain quantities on cities and widespread regions at higher latitudes than is “normal”.
  6. A relatively rare meteorological event called an “atmospheric river” is now much more common, and injects huge quantities of water over several days to specific regions, such as Banff (with water running downhill to Calgary) and Toronto and Colorado events.
The above is extracted from one of Paul's earlier posts.

Paul discusses more details in the videos below. Our abruptly changing climate system: where we are and where we are going.

Abrupt Climate Change - part 1


And the next part, Abrupt Climate Change - part 2


Extreme weather is like a sledgehammer repeatedly pounding away at the inaction, lethargy, and climate change denial that is prevalent in rich Western countries around the world.

Inevitably, the hammer pounding will increase in frequency, severity, duration, and spatial extent over the next few years until the denial crumbles, in spite of the annual one billion dollars in fossil fuel money that is paid to support fraud by hiding the truth on the threat that we all face. 

A tipping point in collective societal behaviour will occur, and humanity will finally initiate action, albeit frantically, to begin to deal with the largest problem ever faced in our history.




Paul Beckwith is a part-time professor with the laboratory for paleoclimatology and climatology, department of geography, University of Ottawa. He teaches second year climatology/meteorology. His PhD research topic is “Abrupt climate change in the past and present.” He holds an M.Sc. in laser physics and a B.Eng. in engineering physics and reached the rank of chess master in a previous life.

Monday, January 27, 2014

Our New Climate and Weather - part 2



by Paul Beckwith

continued from part 1

In North America we are about to experience a late January, 2014 weather event that will likely go down in the record books, at least for a few weeks until the next event. Such is life on our rapidly changing planet in Climate 2.0, or perhaps this would better be called the great abrupt climate change transition between Climate 1.0 (our old climate) and the new, much warmer Climate 2.0.

In any event, the jet stream is configuring into that two crest/two trough mode that I discussed above. An enormous plug of cold Arctic air is descending southward across North America with temperature anomalies 20 degrees C below normal (36 degrees F below normal). It likely reaches far enough south to enter into northern Mexico and to cover large parts of Florida and extend out into the Gulf of Mexico and the Atlantic, resulting in northern Florida dropping below freezing (see my YouTube video below).

For more commentary on above video, see the post Deep Freeze and Abrupt Climate Change

Meanwhile, in turn, almost the entire Arctic region is seeing huge positive temperature anomalies that are 20 degrees C above normal (36 degrees F above normal). This air is changing the Arctic circulation patterns, and although the Arctic air temperature is still below zero, it is so much warmer than normal that the thickening and area growth of sea ice is being severely curtailed. There is strong ice motion out of the Fram Strait between Greenland and Svalbard which is carrying some of the thickest ridged ice just north of the Canadian archipelago out to warmer water and destruction. In the Bering Strait the ice motion is switching between transport of warm Pacific Ocean water into the Arctic Ocean and export of cold Arctic Ocean water out into the Pacific, leading to less ice formation outside the strait.


The easternmost and westernmost edges of North America are outside the jet stream trough, and being in the ridge on either side of the trough are experiencing record warm temperatures. Snow is minimal there, and lakes that would normally have frozen long ago are open water. Further south on the west coast, California is undergoing a record drought and the Sierra Nevada snow pack which feeds the rivers and reservoirs in the state is only at 15 to 20% of normal levels. And this is the normal rainy season for California, which is the breadbasket of the nation. If this drought continues, as it has for almost 3 years, it is very likely that food prices will increase substantially across North America.

Putting on my Engineering hat, it is very clear to me that the large temperature swings over short periods of time that occur as the jet stream troughs and ridges sweep past a fixed region such as a city are wreaking havoc on infrastructure. We have commonly been getting temperature swings of 40 degrees Celsius (72 degrees F) within a day or two. These swings usually cross zero, and result in torrential rain events followed by flash freezing and then large amounts of snow, or the inverse process occurs, often in a cycle over a week. Clearly buildings, roads, railroad tracks, and pipelines are under siege from these temperature swings, precipitation changes and repeated freeze/thaw cycles.

Consider a railroad track. The rails are basically two ribbons of steel of length L separated by width w that are held in place by spikes onto wooden railroad ties. Each section L is joined to adjacent sections with spacers. The tracks are designed for a nominal temperature range. At the high end temperature, the steel expands to its maximum length, and adjacent sections butt together at the join. At the low end temperature, the steel contracts and the gap between adjacent rails is at a maximum. As the daily temperature varies between the lows and highs, the rail expands and contracts. Similarly, for seasonal changes. All within design tolerances. What we are seeing now is a higher frequency of extreme temperature swings of 40 degrees C or larger (72 degrees F), which is greatly stressing the rail infrastructure. These large swings are stretching the limits of the design tolerances since they exceed the usual daily temperature ranges, and occur way faster than any seasonal change. In combination with the explosion of rail traffic from oil trains, the risk of derailment accidents has greatly increased, and we are seeing an enormous increase in derailments. We have also seen a large increase in the frequency, amplitude, duration, and spatial area of torrential rainfall events which have led to floods and extreme river flow rates which undercuts bridges and also leads to more rail derailments. Especially when the rail is submerged for extended periods of time, as occurred, for example in Colorado in late summer 2013.

Ditto with pipelines. Pipeline sections are attached to each other via welds or sleeves and during extreme temperature swings the expansion and contraction of concern is in the longitudinal direction of the pipe. The pipelines are usually buried a few meters under the ground, which can reduce the temperature variation during the atmospheric temperature swings, however where they cross rivers and streams they are exposed to the changing elements and river flows. They are also susceptible to flash freeze events in which large sections of the ground contract and lead to cracking and soil displacement. Water saturation levels in the soils has a large effect on pipeline stresses, and can undergo rapid changes from rapidly changing precipitation cycles.

We are all familiar with how roads fare under extensive freeze/thaw cycles. Even worse, the ice melting salt corrodes guardrails, signs, and posts and as cracks open up in the asphalt salty water percolates in and the freeze thaw cycles widen the cracks leading to potholes and road breakup. And that is in northern latitude regions that have a regular snow in winter climate. In more southern regions that are unaccustomed to snow, there is widespread use of concrete for road surfaces. When there are large temperature swings the concrete is more prone to cracking and it is more difficult to remove snow and ice from these roads, since there is a lack of snow removal equipment and salt in these regions, and the concrete is lighter in color and thus absorbs less solar energy than asphalt and thus stays colder.

The biggest problem that homeowners face in more southern latitudes from these deep freeze situations, apart from personal discomfort in poorly insulated homes, is water pipe freezing and rupturing. Leaving the water taps all partially open to ensure a trickle of water flow through the pipes alleviates a lot of this problem.

In summary, climate change caused extreme weather events are severely stressing infrastructure like roads, bridges, rail, pipelines, and buildings. Much of this infrastructure was built many years ago and upgrading and maintenance has been neglected due to postponed and reduced budgets; while traffic on rail, for example has exploded in volume and weight. We are now facing the consequences of accelerated climate change and the years of neglect of our aging infrastructure.

In the video below, Paul says more about the damage to railway tracks and pipelines.



Southern Hemisphere Climate Changes

In the video below, Paul Beckwith explains how declining Arctic sea ice is causing Australia to bake and Antarctic sea ice to grow.


to be continued

Saturday, January 18, 2014

Our New Climate and Weather


by Paul Beckwith

The familiar global weather patterns that we, our parents, and our grandparents (and most of our distant ancestors, at least as far back as the last ice age remnants) have always experienced are no more. We have entered an abrupt climate change phase in which an energized water primed atmosphere and disrupted circulation patterns give rise to unfamiliar, massive and powerfully destructive storms, torrential rains, widespread heat waves and droughts, and less commonly but occasionally widespread cold spells.

Why is this happening now? Sophisticated Earth System computer Models (ESMs), summaries of state-of-the-art peer reviewed climate science (Intergovernmental Panel on Climate Change IPCC), and mainstream science have generally put the climate change threat out to the latter part of the century. Global data from all parts of the world, but most noticeably the Arctic shows that reality is quite different from these models and mainstream thinking.

Just by looking out the window much of humanity now senses that something is very different, and uncomfortably wrong in their particular region.

Depending on location, vegetation is drying out and burning, or being toppled by very high wind events, or oceans are invading upon coastlines, or rivers are overrunning banks or drying up or both, while rainfall deluges are inundating other regions. In fact some regions are vacillating between massive floods and massive droughts, or record high temperatures and record low temperatures, even on a weekly basis.

As crazy as things are now, clearly they are not bad enough to wake up the general population enough to vote down denier politicians and demand extensive governmental action on the problem. Not to worry, that action is a sure bet in the near future, the only question is will it happen next year, or in 3 years?

In the meantime, many of us are doing as much as we can to educate people on the dangers we face and speed up the understanding of climate reality process. As much as we do, ultimately it is the hammer of extreme weather, causing, for example global crop failures or taking out a few more cities in rich countries that will take the final credit for an abrupt tipping point in human behavior.

The key to the disruption in the climate system is the Arctic.

Human emissions have inexorably increased levels of carbon dioxide and methane (Greenhouse gases GHGs) in the atmosphere sufficiently to cause an incremental overall increase of global mean surface temperature by 0.8 degrees C over the last century. Over the last 3 decades, the GHGs have caused sufficient warming in the Arctic to melt enough land-covered snow and ocean covered ice such that the highly reflective surfaces have been replaced by dark underlying land and ocean greatly increasing sunlight absorption causing Arctic temperature amplification of 3x to 5x and higher.

This has melted permafrost on the land and on the shallow continental shelves and has increased Arctic methane emissions, which on a molecule-to-molecule basis cause warming >150x compared to carbon dioxide on a short timescale. Arctic temperature amplification has reduced the equator-to-Arctic temperature difference, which is responsible for setting up global circulation patterns on the rotating Earth. Thus, the high speed jet stream winds which circumvent the globe become slower, and wavier, and weather patterns change.

Extreme weather events become stronger, more frequent, of longer duration, and act on new regions. In effect, the climate background has changed, so the statistics of all weather events changes. When the ocean tide comes in all boats rise, when the climate system changes all weather events change.

So how does the North American freeze of early January, 2014 and the upcoming late January, 2014 freeze fit into this picture? In our familiar climate, the polar jet stream flowed mostly west to east (with small north-south deviations or waves, with typically 4 to 7 crests and troughs around the globe) separating cold dry Arctic air from lower latitude warmer moist air. The latitude of the jet moves southward in our winter and northward in our summer.

In our present climate the jet stream waviness has greatly increased and eastward average speed has decreased. Not only that, but in early January there were only two troughs (over North America and central Asia) and two crests (over Europe and the Pacific up through Alaska and the Bering Strait).

The troughs had temperatures 20 degrees C cooler than normal, while the crests had temperatures 20 degrees C warmer than normal. These large waves and slowing of the jet stream is directly responsible for the changes we have been experiencing in weather extremes. Cold or warm, depending on your location.

continued at part 2

Sunday, January 5, 2014

Global Warming and the Gulf Stream

Global Warming and the Gulf Stream - Our Atmospheric Pollution Roadway to Subsea Arctic Methane-Induced Climatic Hell

by Malcolm P.R. Light, 5th January, 2014

The amount of water presently transported north eastward by the Gulf Stream varies from 30 million cubic metres per second off Florida to a maximum of 150 million cubic metres per second south of Newfoundland at 55° is transported within this volume of water is approximately equal to the amount carried north east by the atmosphere which gives North Western Europe its milder climate (Wales, 2013).

The surface temperature off the Coast of the United States in the western North Atlantic shows the warm Gulf Stream (in red on Figure 1) while colder oceanic zones are in dark blue (Wales, 2013).

Figure 2 from Csanady (2001) shows the heat gain and loss for the Atlantic Ocean which was posthumously published from Bunker in (1988) In: the North Atlantic from Bunker and Worthington (1976).

Csanady (2001) says that "the contours connect points of equal heat gain in watts per square meter (Wm-2)(negative if heat is lost). The zero-gain contour cuts through this ocean along a diagonal roughly from Spain to the island of Hispaniola in the Caribbean. North of this contour the ocean loses heat, at spectacularly high rates over the warm waters of the Gulf Stream. Here the annual average rate of loss exceeds 200 watts per square meter (exceeds 250 watts per square meter off New England/Canada - my insertion). On the other side of the ocean, off the Norway coast, a northwards tongue of the Warm-Water-Sphere (Gulf Stream - my insertion) is still responsible for heat losses between 50 and 100 watts per square meter, and even higher off Lapland".

When humans get too hot their bodies perspire (sweat) water and this water evaporates at a high rate in windy conditions giving them "wind chill". The excessive heating off the Gulf Stream by pollution clouds pouring off the coast of North America is directly related to excessive heat loss in the same region (Figure 2) because the heat induced extreme atmospheric pressure change generates very strong winds which "wind chill" the overheated ocean there. Gulf Stream water temperatures range up to 13°C to 26.5°C (Hurricanes) and water in this temperature range requires about 2440 to 2470 thousand Joules of energy per kilogram for it to change from a liquid into a gaseous state (Latent heat of evaporation; Hyperphysics, 2013; Lide and Fredrickse, 1995). The loss of this latent heat of evaporation is the main reason for the extreme heat loss shown by the hot Gulf Stream waters offshore North America (Figure 2).
Figure 3. shows the yearly human carbon dioxide emissions in tons per person versus inflation adjusted income (Image from gapminder.org, 2013).

The total carbon dioxide emitted by each country is proportional to the size of the circles (Figure 3).

The United Kingdom emitted the most carbon dioxide per person at the start of the industrial revolution but the United States caught up with the U.K. at the start of the 20th century (Figure 3).

From then on the U.S.A. grew to be the largest emitter of carbon dioxide (Figure 3). An average U.S. citizen causes 3 times as much carbon dioxide to be emitted (19 tons of carbon dioxide/person) than a person in China (4.7 tons of carbon dioxide/person)(Figure 3).

China however due to its large population emits a lot of carbon dioxide in total (Figure 3). 5 states, the United Arab Emirates, Saudi Arabia, Australia, U.S.A. and Canada have the most extreme human carbon footprints on Earth (Figure 3) (Light, 2013).

Figures 4a shows the giant equatorial current gyres in the Southern and Northern Hemispheres.

The southern gyre (South Atlantic) is very symetrical, while the northern gyre (North Atlantic) shows extreme asymetry with the elongated core rotational zone lying only a short distance east of the coast of North America and the narrow Gulf Stream current here is elevated and shows the highest volume of transport (150 Sverdrups = 150 million cubic metres per second).

This extreme asymetry is due to global warming from the large volume of pollution clouds pouring off the industrialized zones along the east coast of North America.

This generates a massive atmospheric pressure gradient and accelerates the strong prevailing South Westerly wind flow.

These winds drive the Gulf Stream to high velocities and force surface waters to move offshore from Ekman transport, piling them up (Figure 4b) (Csanady, 2001).

Figure 4b also shows the limited extent of the Sargasso Sea in the late 20th century.

In the late 18th century the Sargasso Sea extended over the entire middle of the North Atlantic (Figure 4c; Krummel 1891).

The extreme asymetry presently The extreme asymetry presently shown by the North Atlantic current gyre (Figure 4d) in the middle of the 20th century was caused by the migration of the rotational core zone more than 1500 km north west as the strength of the prevailing South Westerly winds picked up along the Gulf Stream offshore N. America due to the global warming caused by pollution clouds pouring offshore from the onshore U.S. industries.



The extremely high current transport rates of the Gulf Stream directly offshore the industrialized United States varied from 55 in 1942 to up to 150 Sverdrups (millions of cubic metres/second) at the present day indicating the effects of extreme global warming enhancement here (Figure 4d, Csanady, 2001; Sverdrup, Johnson and Fleming, 1942; Wales, 2013). In addition this map shows the extreme asymmetry of the North Atlantic current gyre, the heated ocean waters in the region of the Gulf Stream (line ornament) and the north east extension of the Gulf Stream via the Hebrides and Norway to the Arctic Ocean (Figure 4d, Sverdrup, Johnson and Fleming, 1942). Csanady (2001) says that:- "South of the zero-gain contour, over most of the subtropical gyre, the ocean gains heat as colder waters flow southward (Canary Current - my insertion) and absorb solar heat. The energy gain through this "cold water advection" process being, however, moderate, typically 25 watts per square meter. In this region, evaporation is also high, raising the salinity of surface waters". Figure 4d. shows the hot north - east trending Gulf Stream feeding into the North Atlantic Drift and a number of south east trending higher salinity branches which flow clockwise back into the extreme surface salinity zone in the North Atlantic (Weather - online 2012).

The spectacular rates of heat loss from the Gulf Stream waters off the coast of the United States can be clearly followed north east to Norway where they split into the eastern Yermack branch entering the Barents Sea and the West Spitzbergen (Svalbard) Current which dives beneath the floating Arctic Ice Cap (Figure 2). This northward pointing tongue of hot and saline Gulf Stream water is also clearly visible on the salinity map (Figure 5) as strong inflexions in the contours first west of Ireland and then south of Svalbard just before the Gulf Stream dives beneath the floating Arctic Ice cap as the West Spitzbergen Current (Figure 5).


The Gulf Stream (West Spitzbergen Current) follows the southern shelf edge of the Arctic Eurasian Basin to the Laptev Sea destabilizing the subsea Arctic methane hydrates en route and releasing ever increasing amounts of methane into the Arctic atmosphere (Figure 6). The West Spitzbergen Current is still losing some 50 watts per meter by the time it reaches the floating ice cap west of Svalbard but the shallower eastern Yermack Current looses much larger amounts of heat (100 - 600 watts per metre depending on the seasons). Häkkinen and Cavalieri, 1989 indicate that in mid-winter off Lapland, heat losses reach 600 watts per square meter while in August they range from 20 to 40 watts per square meter, where the ice-sheet edge stops any exchange of heat from the sea to the air.

Figures 7, 8 and 9 show the yearly north-eastward Gulf Stream transport of the energy (watts) from the North Atlantic Sub-Tropical Gyre to the Arctic Ocean. The map uses Gulf Stream flow volumes in Sverdrups (= one million cubic metres/second) calibrated to the heat flow trend from eight measured heat flow values along the Gulf Stream (Csanady, 2001). The calibration constant is 3.85 x ten to the power of 7. The heat flow data comes from Csanady, 2001; Gulf Stream flow volumes from Sverdrup, Johnson and Fleming, 1942, Wales J., 2013 and the University of California, (CDL, 2013).
The Gulf Stream shows a zone of anomalously large global warming heating, extremely high rates of South Westerly wind induced ocean current flow, extreme wind chill (caused by evaporation of the sea surface) and elevation of the surface of the Gulf Stream along the coast of the industrialized United States and Canada (Figures 7 to 9 and Figure 4b).
Quite clearly the global warming caused by pollution clouds pouring off the coast of the industialized United States is generating a large air pressure differential, accelerating and heating the prevailing South Westerly Wind flow with its consequent wide ranging effects on the Gulf Stream seen as far north as the central Arctic. As mentioned previously this global warming has increased the rate of water transport from 55 Sverdrups in 1942 to up to 150 Sverdrups at the present (Sverdrup et al. 1942, Wales, 2013).

The heat necessary to liberate methane from the methane hydrates in the Arctic Ocean and cause runaway global warming, total deglaciation and extinction in 2052 represents only one thousandth of the total amount of heat being added to the Arctic ocean by the Gulf Stream (Figure 9). The Yermack Current (E. extension of the Gulf Stream) in the Barents Sea intersects the West Spitzbergen Current (W. extension of the Gulf Stream) at the junction of the Eurasian Basin/Laptev Sea (Figure 7 - 9). This represents an extreme subsea - atmospheric methane emission point above a zone of hydrothermal methane hydrates formed on the Gakkel ridge where it enters the Laptev Sea (Light 2013).

Human-induced global warming caused by the burning of fossil fuels is found to be continuous when the ice, land and atmosphere heating data (Church et al. 2011) is combined with the 5 - year average ocean heat content to a depth of 2000 metres (Levitus et al. 2012)(Figure 10a. Nuccitelli et al. 2012).

The lack of incorporation of this data in the global warming equation by the IPCC, is the reason for the extreme 50 year error found in estimating the floating Arctic ice cap melt time using global atmospheric models as discussed in previous papers (Light 2012, Light 2013). The rate of increase of global warming heat is equivalent to 8 x ten to the power of 21 joules per year (Nuccitelli et al. 2012). The ocean has absorbed 93.4 percent of the heat from global warming (Figure 10b, ACS 2013). The total amount of heat generated by human induced global warming between 1990 and 2010 is some 14 x ten power 22 joules which is equivalent to an absorbed energy flux of 2.2 x ten power 14 watts, i.e about 0.5 watts per square metre of the earth's surface (ACS 2013).
The relative amount of human-induced global warming energy in watts being added every year to the oceans, ice, land and atmosphere and being transferred by the Gulf Stream to the subsea Arctic methane hydrates is shown in Figure 11 (Nuccitelli et al. 2012).

Methane release rates from the East Siberian Arctic Shelf (Shakova et al, 2013) combined with the area of the Arctic Ocean have been used to determine mean methane release rates for the entire Arctic Ocean (Light, 2013). If only a few percent of the subsea methane hydrate reserves in the Arctic Ocean (some 1000 billion tons of Carbon) are dissasociated and the methane released to the atmosphere, it will cause total delaciation and a major extinction event (Light and Solana 2002. The energy necessary to produce these Arctic methane release rates require only about one thousandth of the heat energy input from the Gulf Stream to dissociate the methane hydrates (Figure 11).
Furthermore the energy necessary to produce these Arctic methane release rates represent less than one millionth of the global warming heat energy being added to the oceans, ice, land and atmosphere by human fossil fuel burning (Figure 11). The total human induced global warming is equivalent to 4 Hiroshima atomic bombs detonating every second (Nuccitelli et al. 2012).

Humanity has signed its death warrant and our final extinction will be carried out by Mother Earth within the next 30 to 40 years unless we immediately take extremely drastic action to entirely curb our carbon dioxide pollution, eliminate large quantities of methane from the subsea Arctic Ocean, seawater and atmosphere (down to ca 750 ppm) and revert completely to renewable energy.

The rate of water transport of the Gulf Stream off the industrialized United States, south of New Foundland at 55° (Sverdrup et al. 1942) to 150 Sverdrups by 2013 (Wales, 2013). This is a 95 Sverdrup increase in transport over 71 years, at a rate of 1.338 Sverdrups/year equivalent to 1.85 x ten to power 14 watts/year using the conservative factor derived in figure 13.85 x ten to power 7 to covert Sverdrups to energy transport in watts/year. Previous analysis of earthquake activity, Arctic ice cap melt back data and the mean atmospheric methane content of the atmosphere indicate that the Arctic methane hydrate (clathrate) gun began to fire continuously in 2007 and the world is now far advanced into runaway global warming which will increase the mean temperature of the atmosphere by 8 degrees C by the mid 21st century (2050 - 2052)(Light 2013). This will lead to total deglaciation and a major extinction event. (Light 2013). The critical transport in 2007 off the Gulf Stream offshore the indutrialized United States, directly south of New Foundland at 55° west longitude is 42 Sverdrups which precipitated the start of the continuous firing of the methane hydrate (clathrate) gun and runaway global warming.

The Gulf Stream transport rate started the methane hydrate (clathrate) gun firing in the Arctic in 2007 when its energy/year exceeded 10 million times the amount of energy/year necessary to dissociate subsea Arctic methane hydrates. Therefore the United States and Canada must sharply reduce their airborne pollution from fossil fuel extraction and use, to cut back the Gulf Stream transport rate to less than 142 Sverdrups south of New Foundland at 55° west longitude. Here the Gulf Stream transport rate should be reduced to below 130 Sverdrups or even 100 Sverdrups to make sure that the methane hydrate (clathrate) gun completely terminates firing in the subsea Arctic. Unless this is done immediately humanity will be facing complete extinction in a methane induced firestorm by the middle of this century.

Our Only Hope for Survival

Light (2013) clearly showed the required massive reduction in global warming fossil fuel burning emissions that the United States and Canada must undertake immediately, if there is any faint hope of stopping the runaway global warming that is now underway (since 2007). The power, prestige and massive economy of the United States has been built on cheap and abundant fossil fuels and Canada is now trying to do the same. The present end of the financial crisis and recovery of the U.S. economy will take us down the same fossil fuel driven road to catastrophe that the U.S. has followed before. Unless the United States, Canada reduce their extreme carbon footprints (per unit population) (Figures 29 and 30), they will end up being found guilty of ecocide and genocide as the number of countries destroyed by the catastrophic weather systems continues to increase.

The United States and Canada with their expanding economies and their growing frenetic extraction of fossil fuels, using the most environmentally destructive methods possible (fracking and shale oil) as well as the population's total addiction to inefficient gas transport is leading our planet into suicide. We are like maniacal lemmings leaping to their deaths over a global warming cliff. What a final and futile legacy it will be for the leader of the free world to be remembered only in the log of some passing alien ship recording the loss of the Earth’s atmosphere and hydrosphere after 2080 due to human greed and absolute energy ineptitude.

The U.S. Government and Canada must ban all environmentally destructive methods of fossil fuel extraction such as fracking, extracting shale oil and coal and widespread construction of the now found to be faulty hydrocarbon pipeline systems. All Federal Government subsidies to fossil fuel corporations, for fossil fuel discovery and extraction must be immediately eliminated and the money spent solely on renewable energy development which will provide many jobs to the unemployed. All long and short range (high consumption) fossil fuel transport must be electrified and where the range is too large, electrical trains must be used instead of trucks for transport. All the major work for this conversion and railway construction can provide a new and growing set of jobs for the unemployed. Nuclear power stations must continue to be used and should be converted to the safe thorium energy system until the transition is complete.

The U.S. has to put itself on a war footing, recall its entire military forces and set them to work on the massive change over to renewable energy that the country needs to undertake, if it wishes to survive the fast approaching catastrophe. The enemy now is Mother Nature who has infinite power at her disposal and intends to take no prisoners in this very short, absolutely brutal, 30 to 40 year war she has begun. I cannot emphasise more, how serious humanity’s predicament is and what we should try to do to prevent our certain final destruction and extinction in the next 30 to 40 years if we continue down the present path we are following .

Monitoring the Effects of a Reduction in Atmospheric Pollution from the United States and Canada

In conjuction with the massive cut back in pollution emissions by the United States and Canada, the United States must set up a project through the Woods Hole and Rutgers universities to continuously monitor the Gulf Stream flow rate offshore the industrialized United States south of New Foundland at 55° the critical transport rate of 142 Sverdrups. As already shown, the critical transport in 2007 off the Gulf Stream of 142 Sverdrups precipitated the start of the continuous firing of the methane hydrate (clathrate) gun and runaway global warming. As the United States and Canada sharply reduce their airborne pollution from fossil fuel extraction and use, it will cut back the Gulf Stream transport rate to less than 142 Sverdrups south of New Foundland at 55° west longitude. Here the Gulf Stream transport rate should be reduced to below 130 Sverdrups or even 100 Sverdrups to make sure that the methane hydrate (clathrate) gun completely terminates firing in the subsea Arctic and humanity has some breathing space to give it time to completely revert to renewable energy. The Gulf Stream transport rate monitoring work of the Woods Hole and Rutgers universities will be of vital significance in humanities last ditch attempt at surviving the fast approaching extinction event.


References

ACS 2013. Thermal Energy in the Ocean. ACS Climate Science toolkit/Oceans, Ice and Rocks.
http://www.acs.org/content/acs/en/climatescience/oceanicerocks/thermalenergy.html

Balmaseda M.A., Trenberth K.E., Källén E., 2013. Distinctive climate signals in reanalysis of global ocean heat content. Geophysical Research Letters, Vol. 40, Issue 9, 1754 - 1759.

Bryden, H.L., 1979. Poleward heat flux and conversion of available potential energy in Drake Passage. J. Marine Res., 37, 1 - 22.

Bunker A.F. 1976. Computations of Surface Energy Flux and Annual Air-Sea Interaction Cycles of the North Atlantic Ocean. Mon. Wea. Rev. 104, 1122 - 1139.

Bunker A.F. 1988. Surface Energy Fluxes in the South Atlantic Ocean. Mon. Wea. Rev. 116, 809 - 829.

Bunker A.F., and Worthington V., 1976. Energy Exchange Charts of the North Atlantic Ocean. Bull. Amer. Meteor. Soc. 57, 670 - 678.

Carana, S. 2011a. Runaway Warming 2011. Geo-engineering blog
http://geo-engineering.blogspot.com/2011/09/runaway-warming.html

Carana, S. 2011b. Runaway global warming 2011. Knol
http://knol.google.com/k/sam-carana/runaway-global-warming/7y50rvz9924j/64

Carana, S. 2011g. Runaway Global Warming. In: Climate Change the Next Generation.
http://climatechangepsychology.blogspot.com/2011/04/sam-carana-runaway-global-warming.html

Carana, S. 2012. Striking increase of methane in the Arctic. In: Arctic News
http://arctic-news.blogspot.com/2012/05/striking-increase-of-methane-in-arctic.html

Carana S., 2012. Record levels of greenhouse gases in the Arctic. Arctic News. Wednesday, May 2, 2012.
http://www.3.bp.blogspot.com/hBD8fyXU_A/T6E7CIJEZWI/AAAAAAAACrM/4IU5JVN3rTO/S1600/846537569836.jpg

Carana S., 2012. The accumulating impact of methane releases in the Arctic and how much time there is left to act.
http://arctic-news.blogspot.com/p/how-much-time-is-there-left-to-act.html

Carana S., 2012. How much time is there left to act? Abrupt release of 1 Gt of methane.
http://arctic-news.blogspot.com/p/how-much-time-is-there-left-to-act.html

Carana S., 2013. Quantifying Arctic Methane.
http://arctic-news.blogspot.com/2013/11/quantifying-arctic-methane.html

Carana S., 2013. Methane - hydrates.
http://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

Carana S., 2013. Methane up to 2241 ppb at 742 mb on January 23, 2013. In: Carana S., 2013, Dramatic increase in methane in the Arctic in January 2013.
http://arctic-news.blogspot.com/2013/02/dramatic-increase-in-methane-in-the-arctic-in-january-2013.html

Carana S., 2013. Global warming, accelerated warming in the Arctic and runaway global warming. - How much will temperatures rise?.
http://arctic-news.blogspot.com/2013/04/how-much-will-temperatures-rise.html

Carana S., 2011b. Light, M.P.R. and Carana, S. 2011c. Knol - A unit of Knowledge - Methane linked to seismic activity in the Arctic.
http://knol.google.com/k/sam-carana/methane-linked-to-seismic-activity-in/7y50rvz9924j/85?collectionId=7y50rvz9924j.39#

CDL, 2013. The Oceans, their Physics, Chemistry and General Biology. UC Press E-Books Collection, 1982 - 2004. University of California Press. California Digital Library (CDL).
http://publishing.cdlib.org/ucpressebooks/view?docId=kt167nb66r&chunk.id=d3_5_ch15&toc.id=ch15&toc.depth=1&brand=eschol

Church J.A., White N.J., Konikow L.F., Domingues C.M., Cogley G., Rignot E., Gregory J.M., van den Broeke M.R., Monagham A.J., Velicogna I., 2011. Revisiting the Earth's sea - level and energy budgets from 1961 to 2008. Geophysical Research Letters. Vol. 40, Issue 15, 4066. Article first published online 8 Aug. 2013.

Cook J. 2013. 4 Hiroshima bombs worth of heat per second. In: Skeptical Science.
http://www.skepticalscience.com/4-Hiroshima-bombs-worth-of-heat-per-second.html

Csanady G.T., 2001. Air - Sea Interactions. Laws and Mechanisms. Cambridge University Press. 239 pp.

Gapminder, 2012. Yearly Human Carbon Dioxide Emissions
http://www.gapminder.org/world

Häkkinen S., and Cavalieri D.J., 1989. A study of oceanic surface heat fluxes in the Greenland, Norwegian and Barents Seas. J. Geophys. Res. 94, 6145 - 6157.

Hyperphysics, 2013. Heat of Fusion, Heat of Vaporization.
http://hyperphysics.phy-astr.gsu.ed/hbase/thermo/phase2.html

Krümmel D.O., 1891. Die Nordatlantische Sargasso Sea. Map. Scale 1:31300.000. Gotha: Justus Perthes.
http://www.gc.noaa.gov/images/gcil/1891_SargassoSee_Krummel_Petermanns_lores.jpg

Levitus et al. 2012. Global Ocean Heat Content. NOAA/NESDIS/NODS Ocean Climate Laboratory. Updated from Levitus et al. 2012. Global Oceanic Heat and Salt Content. In: NOAA National Oceanographic Data Center (NODS), United States Department of Commerce.
http://www.nodc.noaa.gov/OCS/3M_HEAT_CONTENT/Index.html

Lide R., and Frederickse H.P.R., 1995. CRC Handbook of Chemistry and Physics. 75th Edition. 1-1 to 1-33.

Light M.P.R., 2012. Global extinction within one human lifetime as a result of a spreading atmospheric Arctic methane heatwave and surface firestorm. Arctic-News.
http://arctic-news.blogspot.com/p/global-extinction-within-one-human.html

Light M.P.R., 2013. The Non - Disclosed Extreme Arctic Methane Threat. The 2013 Australian above average temperatures set a record of 0.22oC higher than the 12 month period prior to 2013 and confirm a mid - 21st century atmospheric methane - induced global deglaciation and major extinction event.
https://sites.google.com/site/runawayglobalwarming/the-non-disclosed-extreme-arctic-methane-threat

Light M.P.R. 2011a. Use of beamed interfering radio frequency transmissions to decompose Arctic atmospheric methane clouds. Edited by Sam Carana.
http://arctic-news.blogspot.com/p/decomposing-atmospheric-methane.html

Light M.P.R. 2011c. Stratospheric methane global warming veil. Edited by Sam Carana. In: Arctic News.
http://arctic-news.blogspot.com

Light M.P.R., 2012a. Global exctinction within one human lifetime as a result of a spreading atmospheric methane heatwave and surface firestorm. Edited by Sam Carana. In Arctic News.
http://arctic-news.blogspot.com

Light M.P.R., 2012b. How much time is there left to act, before methane hydrate releases will lead to human extinction? Edited by Sam Carana. In: Geo-Engineering.
http://Geo-Engineering.blogspot.com

Light M.P.R. 2012c. Angels Proposal - A Proposal for the Prevention of Arctic Methane Induced Catastrophic Global Climate Change by Extraction of Methane from beneath the Permafrost/Arctic Methane Hydrates and its Storage and Sale as a Subsidized "Green Gas" Energy Source. LGS. 49 pp. In: Arctic News.
http://arctic-news.blogspot.com.es/2012/05/proposal-to-extract-store-and-sell.html

Light M.P.R. and Carana, S., 2011. Methane linked to seismic activity in the Arctic. Edited by Sam Carana. In: Arctic News.
http://arctic-news.blogspot.com

Light M.P.R. and Solana C., 2002a. Arctic methane hydrates - Mapping a potential greenhouse gas hazard. Abstract and Poster, EGS, Nice.

Light, M.P.R. and Solana, C. , 2002b- Arctic Methane Hydrates: A Potential Greenhouse Gas Hazard
http://adsabs.harvard.edu/abs/2002EGSGA..27.4077L

Murphy D.M., Solomon S., Portmann R.W., Rosenlof K.H., Forster P.M., Wong T., 2009. An obervationally based energy balance for the Earth since 1950. Journal of Geophysical Research: Atmospheres (1984 - 2012), Vol. 114, Issue D17, 16 September 2009.

Nuccitelli D., Way R., Painting R., Church J., Cook J., 2012. Comment on "ocean heat content and Earth's radiation imbalance.II Realtion to climate shifts". Physics Letters A. Vol. 376, Issue 45, 1 October 2012, 3466 - 3468.

Rutgers, 2013a. Atlantic Ocean Gyre Map.
http://www.i-cool.org/wp-content/uploads/2010/02/ce058700fg0010.gif

Rutgers, 2013b. South Atlantic Gyre. I-Cool. International Coalition of Ocean Observing Laboratories. http://www.i-cool.org/?p=4916

Shakova N., 2013. A thawing ocean floor pours methane into the atmosphere and it's only getting worse. PRI. Science. Tech and Environment.
http://www.pri.org/stories/2013-12-12/thawing-ocean-floor-pours-methane-atmosphere-and-its-only-getting-worse

Sverdrup, Johnson and Fleming, 1942. In; introduction to Physical Oceanography.
http://oceanworld.tamu.edu/resources/ocng_textbook/chapter 11/chapter11_04.htm
http://publishing.cdlib.org/ucpressebooks/view?docId=kt167nb66r&doc.view=popup&fig.ent=http://publishing.cdlib.org/ucpressebooks/data/13030/6r/kt167nb66r/figures/kt167nb66r_fig187.gif

Wales J., 2013.
- Wikipedia; Gulf Stream.
http://www.en.wikipedia.org/wiki/File:Golfstrom.jpg
- Wikipedia; Methane.
http://www.en.wikipedia.org/wiki/Methane
- Wikipedia; South Atlantic Gyre
http://www.en.wikipedia.org/wiki/File:South_Atlantic_Gyre.png
- Wikipedia; West Spitsbergen Current
http://www.en.wikipedia.org/wiki/West-Spitsbergen-Current
- Wikipedia; Sverdrup
http://www.en.wikipedia.org/wiki/Sverdrup

Weatheronline, 2013.
http://www.weatheronline-co.uk/reports/wxfacts/North-Atlantic-Drift-Gulf-Stream.htm